The effect of influential data, model and method on the precision of univariate calibration.
نویسندگان
چکیده
Building a calibration model with detection and quantification capabilities is identical to the task of building a regression model. Although commonly used by analysts, an application of the calibration model requires at first careful attention to the three components of the regression triplet (data, model, method), examining (a) the data quality of the proposed model; (b) the model quality; (c) the LS method to be used or a fulfillment of all least-squares assumptions. This paper summarizes these components, describes the effects of deviations from assumptions and considers the correction of such deviations: identifying influential points is the first step in least-squares model building, the calibration task depends on the regression model used, and finally the least squares LS method is based on assumptions of normality of errors, homoscedasticity, independence of errors, overly influential data points and independent variables being subject to error. When some assumptions are violated, the ordinary LS is inconvenient and robust M-estimates with the iterative method of reweighted least-squares must be used. The effects of influential points, heteroscedasticity and non-normality on the calibration precision limits are also elucidated. This paper also considers the proper construction of the statistical uncertainty expressed as confidence limits predicting an unknown concentration (or amount) value, and its dependence on the regression triplet. The authors' objectives were to provide a thorough treatment that includes pertinent references, consistent nomeclature, and related mathematical formulae to show by theory and illustrative examples those approaches best suited to typical problems in analytical chemistry. Two new algorithms, calibration and linear regression written in s-plus and enabling regression triplet analysis, the estimation of calibration precision limits, critical levels, detection limits and quantification limits with the statistical uncertainty of unknown concentrations, form the goal of this paper.
منابع مشابه
On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملReview and Comparison of In-field Calibration Methods of Accelerometer Based on Gravity Vector
Considering the wide applications of accelerometers to determine position and attitude and due to reducing of accuracy of this sensors because of some errors, this paper discusses the calibration of accelerometers. Also because the traditional calibration methods are very time consuming, costly and need precision laboratory equipment, in-field calibration methods are recommended which are simpl...
متن کاملThe Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...
متن کاملA Survey on Precision of Nested Water Level Data Derived From Delft3D Model
One of the troublesome aspects of numerical modeling is to determine open boundaries for a model and to make sure that the boundary conditions employed at the open boundaries are compatible with physical processes being simulated within the interior of the model domain. In this investigation the accuracy of the water level data derived from delft3D employing nesting procedure were studied. Thes...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Talanta
دوره 57 4 شماره
صفحات -
تاریخ انتشار 2002